您当前的位置:金沙澳门官网 >  实用范文 >  工作计划 > 内容

解方程例45教案8篇-金沙澳门官网

无忧文档网    时间: 2023-12-08 10:01:12     阅读:次

教案应该包括评估和反馈的方法,以便了解学生的进展,教师应该根据学生的学习需求和兴趣来设计吸引人的教案,下面是无忧文档小编为您分享的解方程例45教案8篇,感谢您的参阅。

解方程例45教案8篇

解方程例45教案篇1

一、教学目标

知识与技能

(1)理解一元二次方程的意义。

(2)能熟练地把一元二次方程整理成一般形式并能指出它的二次项系数,一次项系数及常数项。

过程与方法

在分析、揭示实际问题的数量关系并把实际问题转化成数学模型(一元二次方程)的过程中,使学生感受方程是刻画现实世界数量关系的工具,增加对一元二次方程的感性认识。

情感、态度与价值观

通过探索建立一元二次方程模型的过程,使学生积极参与数学学习活动,增进对方程的认识,发展分析问题、解决问题的能力。

二、教材分析:教学重点难点

重点:经历建立一元二次方程模型的过程,掌握一元二次方程的一般形式。

难点:准确理解一元二次方程的意义。

三、教学方法

创设情境——主体探究——合作交流——应用提高

四、学案

(1)预学检测

3x-5=0是什么方程?一元一次方程的定义是怎样的?其一般形式是怎样的?

五、教学过程

(一)创设情境、导入新

(1)自学本p2—p3并完成书本

(2)请学生分别回答书本内容再

(二)主体探究、合作交流

(1)观察下列方程:

(35-2x)2=900 4x2-9=0 3y2-5y=7

它们有什么共同点?它们分别含有几个未知数?它们的左边分别是未知数的几次几项式?

(2)一元二次方程的`概念与一般形式?

如果一个方程通过移项可以使右边为0,而左边是只含一个未知数的二次多项式,那么这样的方程叫作一元二次方程,它的一般形式是ax2 bx c=0(a、b、c是已知数 a≠0),其中,a、b、c分别称为二次项系数、一次项系数和常数项,如x2-x=56

(三)应用迁移、巩固提高

例1:根据一元二次方程定义,判断下列方程是否为一元二次方程?为什么?

x2-x=1 3x(x-1)=5(x 2) x2=(x-1)2

例2:将方程3x(x-1)=5(x 2)化成一元二次方程的一般形式,并写出其中的二次项系数、一次项系数和常数项。

解:去括号得

3x2-3x=5x 10

移项,合并同类项,得一元二次方程的一般形式

3x2-8x-10=0

其中二次项系数为3,一次项系数为-8,常数项为-10.

学生练习:书本p4练习

(四)总结反思 拓展升华

总结

1.一元二次方程的定义是怎样的?

2.一元二次方程的一般形式为ax2 bx c=0(a≠0),一元二次方程的项及系数都是根据一般式定义的,这与多项式中的项、次数及其系数的定义是一致的。

3.在实际问题转化为一元二次方程数学模型的过程中,体会学习一元二次方程的必要性和重要性。

反思

方程ax3 bx2 cx d=0是关于x的一元二次方程的条是a=0且b≠0,是一元一次方程的条是a=b=0 且c≠0.

(五)布置作业

(1)必做题p4 习题1.1a组 1.2

(2)选做题:若xm-2=9是关于x的一元二次方程,试求代数式(m2-5m 6)÷(m2-2m)的值。

解方程例45教案篇2

教学目标:

1、学会利用等式性质1解方程;

2、理解移项的概念;

3、学会移项。

教学重点:

利用等式性质1解方程及移项法则;

教学难点:

利用等式性质1来解释方程的变形。

教学准备:

1、投影仪、投影片。

2、天平称、若干个质量相同的物体,与物体质量相同的若干个砝码。

教学过程:

(一)引入新课:

1、 上节课的想一想引入新课:等式和方程之间有什么区别和联系?

方程是等式,但必须含有未知数;

等式不一定含有未知数,它不一定是方程。

2、下面的一些式子是否为方程?这些方程又有何特点?

① 5x+6=9x

②3x+5

③7+5×3=22

④4x+3y=2

由学生小议后回答:①、④是方程。

分析这些方程得:

①等式两边都是一次式或等式一边是一次式,另一边是常数

②这些方程中有的含一个未知数,也有的含两个未知数。

我们先来研究最简单的(只含有一个未知数的)的一元一次方程。

3、一次方程:我们把等号两边是一次式、或等号一边是一次式另一边是常数的方程叫做一次方程。

注意:一次方程可以含有两个或两个以上的未知数:如上例的④。

4、一元一次方程:只含有一个未知数的一次方程叫做一元一次方程。

5、判断下列方程哪些是一次方程,哪些是一元一次方程?(口答)

① 2x+3=11②y2=16③x+y=2④3y-1=4y

6、什么叫方程的解?怎样解方程?

关键是把方程进行变形为x=?即求得方程的解。今天我们就来研究如何求一元一次方程的解(点出课题)利用等式性质1解一元一次方程

(二)、讲解新课:

1、 等式性质1:

出示天平称,在天平平衡的两边同时都添上或拿去质量相同的物体,天平仍保持平衡,指出:等式也有类似的情形。

强调关键词:"两边"、"都"、"同"、"等式"。

2、 利用等式性质1解方程:

x 2=5

分析:要把原方程变形成x=?只要把方程两边同时减去2即可。

注意: 解题格式。

例1 解方程5x=7 4x

分析:方程两边都有含x的项,要解这个方程就需要把含x的项集中到一边,即可把方程变形成x=?

(解略)

解完后提问:如何检验方程时的计算有没有错误?(由学生回答)

只要把求得的解代替原方程中的未知数,检查方程的左右两边是否相等,(由一学生口头检验)

观察前面两个方程的求解过程:

x 2=5 5x=7 4x

x=5-2 5x-4x=7

思考:⑴把 2从方程的一边移到另一边,发生了什么变化?

⑵把 4x从方程的一边移到另一边,又发生了什么变化?(符号改变)

3、 移项:

从变形前后的两个方程可以看到,这种变形相当于:把方程中的某一项改变符号后,从方程的一边移到另一边,我们把这种变形叫做移项。

注意:

①移项要变号;

②移项的实质:利用等式性质1对方程进行变形。

例2 解方程:3x 4=2x 7

解:移项,得3x-2x=7-4,

合并同类项,得x=3。

∴x=3是原方程的解。

归纳:

①格式:解方程时一般把含未知数的项移到方程的左边,把常数项移到方程的右边,以便合并同类项;

②解方程与计算不同:解方程不能写成连等式;计算可以写成连等式;

③一个方程只写一行,每个方程只有一个等号(理由:利用等式性质1对方程进行变形,前后两个方程之间没有相等关系)。

练习:书本105页 1(口答),2(板演),想一想。

(三)、课堂小结:

①什么是一次方程,一元一次方程?

②等式性质1(找关键词);

③移项法则;

④应用等式性质1的注意点(例2归纳的三条)。

(四)、布置作业:见作业本。

解方程例45教案篇3

本单元教学方程的知识,是在四年级(下册)“用字母表示数”的基础上编排的。第一次教学方程,涉和的基础知识比较多,教学内容分成三局部编排。

第1~2页教学等式的含义与方程的意义,根据直观情境里的等量关系列方程。

第3~11页教学等式的性质,解方程,列方程解答一步计算的实际问题。

第12~14页全单元内容的整理与练习。

本单元编排的一篇“你知道吗”简要介绍了我国古代就有方程的思想,并有运用方程解决实际问题的历史记载。

1?从等式到方程,逐步构建新的数学知识。

方程是等式里的一类特殊对象,教材用属概念加种差的方式,按“等式 含有未知数→方程”的线索教学方程的意义。

(1)

借助天平体会等式的含义。

等式是方程的生长点,同学在前几册教材里对等式已经有了初步的认识,为了有利于方程概念的建立,本单元教材首先让同学体会等式的含义。

天平两臂平衡,表示两边的物体质量相等;两臂不平衡,表示两边物体的质量不相等。让同学在天平平衡的直观情境中体会等式,符合同学的认知特点。例1在天平图下方出现“=”,让同学用等式表达天平两边物体质量的相等关系,从中体会等式的含义。教材使用了“质量”这个词,是因为天平与其他的秤不同。习惯上秤计量物体有多重,天平计量物体的质量是多少。教学时不要把质量说成重量,但不必作过多的解释。

例2继续教学等式,教材的布置有三个特点:

第一,有些天平的两臂平衡,有些天平两臂不平衡。根据各个天平的状态,有时写出的是等式,有时写出的不是等式。同学在相等与不等的比较与感受中,能进一步体会等式的含义。第二,写出的四个式子里都含有未知数,有两个是含有未知数的等式。这便于同学初步感知方程,为教学方程的意义积累了具体的素材。第三,写四个式子时,对同学的要求由扶到放。圆圈里的关系符号都要同学填写,同学在选择“=”“>”或“<”时,能深刻体会符号两边相等与不相等的关系;符号两边的式子与数则逐渐放手让同学填写,这是因为他们以前没有写过含有未知数的等式与不等式。

(2)

教学方程的意义,突出概念的内涵与外延。

“含有未知数”与“等式”是方程意义的两点最重要的内涵。“含有未知数”也是方程区别于其他等式的关键特征。在第1页的两道例题里,同学陆续写出了等式,也写出了不等式;写出了不含未知数的等式,也写出了含有未知数的等式。这些都为教学方程的意义提供了鲜明的感知资料。教材首先告诉同学:

像x 50=150、2x=200这样含有未知数的等式叫做方程,让他们理解x 50=150、2x=200的一起特点是“含有未知数”,也是“等式”。这时,假如让同学对两道例题里写出的50 50=100、x 50>100和x 50<200不能称为方程的原因作出合理的解释,那么同学对方程是等式的理解会更深刻。教材接着布置讨论“等式和方程有什么关系”,并通过“练一练”第1题让同学先找出等式,再找出方程,理解等式与方程这两个概念之间的包括与被包括关系。即方程都是等式,但等式不都是方程。这道题里有以x为未知数的等式,也有以y为未知数的等式,使同学对“未知数”有正确的理解,防止把未知数局限为x,把方程狭隘地理解为“含有x的等式”。“练一练”第2题要求同学自身写出一些方程并相互交流,让它们在写方程时关注方程的实质属性,从而巩固方程的概念。

(3)

用方程表示直观情境里的相等关系。

第2页的“试一试”和“练一练”第3题都是看图列方程,编排这些题的目的是培养同学发现和理解实际情境里的等量关系的能力,体会方程是表示等量关系的数学方法,从而进一步巩固方程的概念,并为以后列方程解决实际问题打下扎实的基础。这些内容在编排上有两个特点:

一是直观情境的出现从天平图开始,发展到带括线的图画。带括线的图画在一年级(上册)就出现了,同学比较熟悉。但是,从列算式求答案的习惯思维转向列方程表示等量关系,仍然会有困难。因此,教材先让同学看天平图列方程。天平两臂平衡,表示它左右两边物体的质量相等,已经在两道例题里教学得很充沛了,看天平图列方程能让同学初步知道什么是列方程和怎样列方程,对依据什么列方程和列出的方程表示什么有所体验。

在此基础上,过渡到列方程表示带括线的图画里的等量关系,会平稳得多。二是带括线的图画里的等量关系,突出两个或几个局部数相加是它们的总数。在几个局部数相同时,它们相加用乘法比较简便。这些关系是数量之间最基本的关系。而且这些关系建立在加法和乘法的意义上,同学容易理解。如文具盒的价钱加笔记本的价钱一共20元,买4本同样的故事书一共要16.8元,列出的方程分别是12 x=20和4x=16.8。假如少数同学列出的方程是20-x=12或16.8÷x=4也是可以的,但不宜提倡;绝不能列出20-12=x、16.8÷4=x这样的方程。因为后者仍然是过去列算式的思路,不利于同学体会数量间的相等关系,对以后的教学也是有弊无利的。

2?利用等式的性质解方程。

在过去的小学数学教材里,同学是应用四则计算的各局部关系解方程。这样的思路只适宜解比较简单的方程,而且和中学教材不一致。《规范》从同学的久远发展和中小学教学的衔接动身,要求小学阶段的同学也要利用等式的性质解方程。因此,本单元布置了关于等式性质的内容,分两段教学:

第一段是等式的两边同时加上或减去同一个数,结果仍然是等式;第二段是等式的两边同时乘或除以同一个不等于零的数,结果仍然是等式。在每一段教学等式的性质以后,都和时让同学运用等式的性质解方程。

(1)

在直观情境中,按“形象感受→笼统概括”的方式教学等式的性质。

教材仍然用天平的直观情境教学等式的性质。因为在两臂平衡的天平上,左右两边物体的质量发生相同的变化,天平的两臂仍然坚持平衡。这种现象能形象地表示等式的性质,有利于同学的直观感受。

例3教学等式的一个性质。教材设计了四组天平图,每组左边的天平图表示变化前的等式,右边的天平图表示变化后的等式,从左边的等式到右边的等式,反映了等式的性质。上面的两组图揭示的是等式的两边都加上一个相同的数,仍然是等式;下面的两组图揭示的是等式的两边都减去相同的数,仍然是等式。四组图的内容综合起来就是等式的一个性质。教材精心设计每组天平上物体的质量,第一组图写出的是不含未知数的等式,在左边的天平表示20=20以后,右边天平的两边各加1个10克的砝码,看图填写20 ()○20 ()。同学在两个括号里都写“10”,在圆圈里写“=”,联系天平两边各加10克都变成30克,而天平仍然平衡的现象,体会填写的等式是合理的。这样就首次感知了等式的两边都加上同一个数,结果仍是等式。第二组图写出的是含有未知数的等式,从x=50到x 20=50 20的变化和比较中,对等式两边都加上相同的数有进一步的感受。第三组图写出的等式两边都用字母a表示砝码的质量,圈出a克砝码并画上箭头,表示去掉它的意思。联系已有经验,这里的a代表许多个数,这组天平图与等式概括了众多等式两边减去相同数的情况。第四组图在方程x 20=70的两边都减去20,不但又一次表示了等式性质,而且与解方程的方法十分接近。

另外,这道例题的8个等式中,有7个让同学在圆圈里填写“=”组成等式,这是引导同学切实关注等式有没有变化。右边的四个等式分别让同学在括号里填出同时加上或减去的数,有利于发现等式的性质。

例5教学等式的另一个性质。教材注意利用同学前面学习等式性质的经验,在感知天平的直观情境表示出等式性质的一个实例后,再让同学写一个等式,通过比较、概括与交流,得出“等式的两边都乘或除以相同的数,结果仍然是等式”的结论。教学时有两点应注意:

一是让同学正确理解图意。上面一组天平图的左边原来是一个质量为x克的物体,又添上一个质量相同的物体;右边原来是一个20克的砝码,又添上一个同样的砝码。这表示天平左右两边物体的质量都乘2。下面一组天平图左边原来是3个质量都为x克的物体,现在只剩下1个这样的物体;右边原来是3个20克的砝码,现在只剩下1个20克的砝码。这表示天平左右两边物体的质量都除以3。二是等式两边同时除以的那个数不能是0,这一点同学能够接受。因为前面的教学中,已经多次提到除数不能是0。

(2)

应用等式的性质解方程。

例4和例6教学解方程,解方程的关键是方程的两边都加(减)几、乘(除以)几,教材对此有精心的设计。例4看图列出方程,同学先从图中能得到求x值的启示:

只要在天平的左右两边各去掉10克的砝码。联系等式的性质与方程x 10=50的特点,理解“方程两边都减去10”的道理:

等式的`两边都减去10,左边就剩下x,x的值只要通过右边的计算就能得到。例6在列出方程以后,让同学联系已有的解方程经验和有关的等式性质,考虑“方程两边都要除以几”这个问题,并解这个方程。这些设计都体现了从同学实际动身,让同学主动学习的教育理念。另外,例4的编写还注意了三点:

一是示范了解方程的书写格式,强调等式变换时,各个等式的等号要上下对齐,教学时必需严格遵循;二是求得x=40后,通过“是不是正确答案”的质疑,引导同学根据“左右两边是不是相等”进行检验;三是在回顾反思求x值的过程基础上,讲了什么是“解方程”。这些都是以后解方程时反复使用的知识。

协助同学逐渐掌握解方程的方法并形成相应的技能,是教材编写时认真考虑的问题。用好教材设计的两道题,能培养同学这方面的能力。一处是第4页“练一练”第1题,为了使方程的左边只剩下x,方程的左边已经加上25(或减去18),右边应该怎样?这是刚开始教学解方程时的设计。通过在方框里填数,在圆圈里填运算符号,

引导同学正确应用等式的性质,体会解方程的战略和思路,理出解方程的关键步骤。同学在方框里填数一般不会有问题,在圆圈里填运算符号可能会出现错误。要通过交流和评价,协助他们正确掌握方程的两边同时加上或同时减去相同的数。另一处是第6页第7题,简化解方程过程的书写,浓缩思路,是在基本掌握解方程的方法以后布置的。如解方程x-20=30,在方程的两边都加20这一步,省写了虚线框里的内容: x-20 20=30 20,直接写出x=30 20。这样做能使解方程的考虑流畅、书写简便,从而提升解方程的能力。教学时要让同学体会简化的过程,重点讨论圆圈里填什么符号、方框里填什么数以和为什么。第8页“练一练”第1题、第10页第2题的编排意图与上面相同。

解方程例45教案篇4

教学目的:

掌握圆的标准方程,并能解决与之有关的问题

教学重点:

圆的标准方程及有关运用

教学难点:

标准方程的灵活运用

教学过程:

一、导入新课,探究标准方程

二、掌握知识,巩固练习

练习:

⒈说出下列圆的方程

⑴圆心(3,-2)半径为5⑵圆心(0,3)半径为3

⒉指出下列圆的圆心和半径

⑴(x-2)2 (y 3)2=3

⑵x2 y2=2

⑶x2 y2-6x 4y 12=0

⒊判断3x-4y-10=0和x2 y2=4的位置关系

⒋圆心为(1,3),并与3x-4y-7=0相切,求这个圆的方程

三、引伸提高,讲解例题

例1、圆心在y=-2x上,过p(2,-1)且与x-y=1相切求圆的方程(突出待定系数的数学方法)

练习:

1、某圆过(-2,1)、(2,3),圆心在x轴上,求其方程。

2、某圆过a(-10,0)、b(10,0)、c(0,4),求圆的方程。

例2:某圆拱桥的跨度为20米,拱高为4米,在建造时每隔4米加一个支柱支撑,求a2p2的长度。

例3、点m(x0,y0)在x2 y2=r2上,求过m的圆的切线方程(一题多解,训练思维)

四、小结练习p771,2,3,4

五、作业p811,2,3,4

解方程例45教案篇5

教学目标:

(一)知识目标:掌握椭圆的定义及其标准方程,能正确推导椭圆的标准方程。

(二)能力目标:培养学生的动手能力、合作学习能力和运用所学知识解决实际问题的能力;培养学生运用类比、分类讨论、数形结合思想解决问题的能力。

(三)情感目标:激发学生学习数学的兴趣、提高学生的审美情趣、培养学生勇于探索,敢于创新的精神。

教学重点

椭圆的定义和椭圆的标准方程。

教学难点

椭圆标准方程的推导。

教学方法

探究式教学法,即教师通过问题诱导→启发讨论→探索结果,引导学生直观观察→归纳抽象→总结规律,使学生在获得知识的同时,能够掌握方法、提升能力。

教具准备

多媒体课件和自制教具:绘图板、图钉、细绳。

教学过程:

(一)设置情景,引出课题

问题:xx年10月12日上午9时,“神州六号”载人飞船顺利升空,实现多人多天飞行,标志着我国航天事业又上了一个新台阶,请问:“神州六号”飞船的运行轨道是什么?多媒体展示“神州六号”运行轨道图片。

(二)启发诱导,推陈出新

复习旧知识:圆的定义是什么?圆的标准方程是什么形式?

提出新问题:椭圆是怎么画出来的?椭圆的定义是什么?它的标准方程又是什么形式?

引出课题:椭圆及其标准方程

(三)小组合作,形成概念

动画演示椭圆形成过程。

提问:点m运动时,f1、f2移动了吗?点m按照什么条件运动形成的轨迹是椭圆?

下面请同学们在绘图板上作图,思考绘图板上提出的问题:

1在作图时,视笔尖为动点,两个图钉为定点,动点到两定点距离之和符合什么条件?其轨迹如何?

2改变两图钉之间的距离,使其与绳长相等,画出的图形还是椭圆吗?

3当绳长小于两图钉之间的距离时,还能画出图形吗?

学生经过动手操作→独立思考→小组讨论→共同交流的探究过程,得出这样三个结论:

椭圆

线段

不存在

并归纳出椭圆的定义:平面内与两个定点、的距离的和等于常数(大于)的点的轨迹叫做椭圆。这两个定点叫做椭圆的焦点,两焦点的距离叫做椭圆的焦距。

(四)椭圆标准方程的推导:

1回顾:求曲线方程的一般步骤:建系、设点、列式、化简。

2提问:如何建系,使求出的方程最简?

由各小组讨论,请小组代表汇报研讨结果。

各组分别选定一种方案:(以下过程按照第一种方案)

①建系:以所在直线为x轴,以线段的垂直平分线为y轴,建立直角坐标系。

②设点:设是椭圆上任意一点,为了使的坐标简单及化简过程不那么繁杂,设,则设与两定点的距离的和等于。

③列式

④化简:(这里,教师为突破难点,进行设问:我们怎么化简带根式的式子?对于本式是直接平方好还是整理后再平方好呢?)

解方程例45教案篇6

教学目标

1、使学生初步理解方程方程的解和解方程的含义。

2、初步掌握解简易方程的方法并会检验。

教学重点

使学生初步掌握解方程的方法和书写格式。

教学难点

帮助学生建立方程的概念,并会应用。

教学设计

一、复习准备

(一)口算各题。

(二)列式。

1、一支钢笔元,2支钢笔多少元?

2、与4的和。

二、新授教学

(一)方程的意义

1、介绍天平

这是一架天平、可以用来称物品的重量。当天平的指针指在标尺中间时,表示天平平衡,即天平两端的重量相等。

2、引出方程

(1)出示图片:天平1

教师提问:这个天平平衡吗?说明了什么?谁会用等式表示?

(2)出示图片:天平2

教师提问:请同学们观察,天平平衡说明了什么?怎样用式子表示?

教师板书:20+?=100

教师说明:这个未知数?,如果用来表示就可以写成20+=100。

(3)出示图片:篮球

教师提问:这幅图是什么意思?怎样用含有未知数的等式表示?

3、方程的意义。

教师提问:观察上面三个等式回答问题。这三个等式有什么相同点和不同点?

相同点:都是相等的式子。

不同点:第一个等式不含有未知数,第二个和第三个等式含有未知数。

教师板书:象这种含有未知数的等式,叫方程。

教师强调:含有未知数、等式

4、思考:方程和等式之间到底是什么关系呢?

(1)出示图片:等式与方程

(2)小结:所有的方程都是等式,但是等式不一定都是方程。

(二)教学例1

1、方程的解

教师提问:等于多少时方程左边和右边相等?

教师说明:使方程左右两边相等的未知数的值,叫做方程的解。

2、解方程

教师板书:求方程的`解的过程叫做解方程。

3、教学例1

例1:解方程-8=16

(1)教师提问:解方程先写什么?根据什么计算?

(2)教师板书:解:根据被减数等于减数加差

(3)怎样检查解方程是否正确?

检验:把代入原方程,左边,右边

左边=右边

所以是原方程的解。

4、讨论:方程的解和解方程有什么区别?

三、课堂小结

今天你学到了哪些知识?什么叫方程?方程的解和解方程有什么区别?

四、巩固练习

(一)填空

1、含有未知数的叫做方程。

2、使方程左右两边相等的,叫做方程的解。

3、求方程的解的叫解方程。

解方程例45教案篇7

教学目标:

1、结合具体情境,了解方程的含义。

2、会用方程表示简单情境中的等量关系。

3、在列方程的过程中,发展抽象概括能力。

教学重难点:

了解方程的意义。会用方程表示简单情境中的等量关系。

教材分析:

为了使学生体会方程是刻画现实世界的一个有效的数学模型,产生学习方程的欲望,教材设置了多方面的问题情境。

教学设计:

一、创设情境,了解方程的含义

1、出示88页的天平图

师:你从图中看到了什么?

天平的左边有一个药丸和5克砝码,右边有10课砝码,天平的指针在中间,说明天平平衡。

师:天平平衡说明了什么?

天平两边的质量相等。

师:如果用x表示药丸的质量,你能根据天平平衡写出一个等式吗?每人在纸上写一写,试一试。

学生汇报

师:x+5表示什么意思?10表示什么意思?=表示什么意思?

2、出示92页的月饼图

师:你从图中看到了什么?

师:你能不能写一个等式吗?

同桌讨论

一生汇报

生:每块月饼的质量×4=400克。

师:如果用x表示每块月饼的质量,你能写一个等式吗?每人在纸上写一写。

学生汇报:4x=400

3、出示88页水壶图的左半幅

师:你从图中看到了什么?根据这幅图,你能不能说出一个等式呢?(同桌互相说)

一生汇报。

师:如果每个热水瓶能进x毫升的水,你能用字母表示这个等式吗?每人在纸上写一写。

生汇报

2x 200=20xx;

2x=20xx-200

师:请同学们观察我们列的几个算式,它们有什么共同点?与同学交流。

师:像上面这些含有未知数的等式叫方程。

谁能说一说方程有什么特点?

二、拓展应用:会用方程表示简单情境中的等量关系。

同学们已经认识了方程,那么怎么列方程那?

1、第93页第1题

看图列方程

你是怎么想的?

2、第89页第2题

根据题意列方程

第二题对于学生来说有一定的难度,需要教师引导学生做。

3、第89页第3题

可以先引导学生找出日历中尽可能多的规律,并尝试用字母表示出来,在讨论书上的问题。

三、总结

今天这节课我们学了什么内容,你学到了什么,还有哪些疑问?教学反思:学生通过天平了解了方程的含义,学会了用方程表示简单情境中的数量关系,在列方程的过程中,发展了学生的抽象概括能力。

解方程例45教案篇8

课前准备

教师准备 多媒体课件

教学过程

⊙谈话揭题

1.谈话导入。

我们学过了关于方程的哪些知识?(结合学生的回答板书)

预设

生1:方程的意义。

生2:方程与等式的关系。

生3:解方程的方法。

生4:用方程知识解决实际问题。

……

2.揭示课题。

同学们说得很全面,这节课我们就来系统地复习有关方程的知识。(板书课题:方程)

⊙回顾与整理

1.方程。

(1)什么是方程?它与算术式有什么不同?

明确:

①含有未知数的等式叫作方程。

②算术式是一个式子,由运算符号和已知数组成。方程是一个等式,在方程里的未知数可以参与运算,并且只有当未知数为特定的数值时,方程才成立。

(2)什么是方程的解?

使方程左右两边相等的未知数的值,叫作方程的解。

(3)什么是解方程?

求方程的解的过程叫作解方程。

(4)解方程的依据是什么?

①等式的性质。

②加减法和乘除法各部分之间的互逆关系。

(5)课件出示教材80页“回顾与交流”3题。

①组织学生分组讨论解方程的步骤和方法,以及哪些地方需要注意。

②指名到黑板前进行板演。

③全班交流并说一说自己是怎么解的。

2.列方程解决实际问题。

(1)列方程解应用题的步骤。

学生小组交流并集体汇报,然后教师明确:

①弄清题意,确定未知数并用x表示;

②找出题中数量间的相等关系;

③列方程,解方程;

④检验并写出答语。

(2)列方程解应用题的关键及找等量关系的方法。

①列方程解应用题的关键是什么?

列方程解应用题的关键是找出题中的等量关系,根据等量关系列方程解答。

②你知道哪些找等量关系的方法?

预设

生1:根据关键性词语找等量关系。

生2:根据常见的四则混合运算的意义及各部分之间的关系找等量关系。

生3:根据常见的数量关系找等量关系。

生4:根据计算公式找等量关系。

(3)课件出示教材80页“回顾与交流”4题。

教师引导学生先找出各题的等量关系,再列方程自主解决问题。

《解方程例45教案8篇.doc》
将本文的word文档下载到电脑,方便收藏和打印
推荐度:

文档为doc格式

相关热搜

《解方程例45教案8篇.doc》

vip请直接点击按钮下载本文的word文档下载到电脑,请使用最新版的word和wps软件打开,如发现文档不全可以联系客服申请处理。

文档下载
vip免费下载文档

浏览记录

网站地图